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Abstract 

In this paper, a 5-axis design of a 3D printer will be presented. The classical serial 3-axis kinematics 

was upgraded with a rotary-tilt table that introduces two additional rotary axes, and, thus, enabled 5-

axis printing. Instead of utilizing the upgraded 3D printer in the continuous 5-axis manner, the authors 

analyze an intermediate solution – 3+2 axis printing – which can enjoy benefits of both 3-axis and 5-

axis printing. In 3+2 printing, material is deposited layer-by-layer, like in 3-axis printing, but not all 

the layers are oriented in the same direction and may alter their orientation. This approach allows 

eliminate supports, reduce material usage, and printing time. Furthermore, surface roughness and 

shape accuracy can be manipulated by changing the orientation of the slicing plane. Analysis of the 

influence of the slicing plane orientation on the surface quality is the topic of this paper. 

Introduction  

3d printing is often considered an ultimate technology that can produce any kind of complex 

geometry. However, this is not true for all processes and all geometries. Additive technologies, 

especially the layer-based extrusion ones, have several limitations. Most known limitations are the 

need of support structures and the stair-stepping effect. During extrusion of plastics the plastic itself 

is in a viscous state. When it is deposited for building a slanted structure, it will have the tendency to 

flow in the direction of gravity, thus affecting both local surface roughness and geometrical accuracy. 

To overcome these issues it is generally recommended to add support structures for surfaces that are 

at an angle of 45 degrees or more. In this case, the CAD/CAM software is to detect such overhangs 

and plan additional material to be placed beneath. Second, the stair-stepping effect appear due to the 

fact that each deposited layer has a finite thickness and a certain profile that does not exactly match 

the shape of fabricated parts. Both issues have severe implications on the surface quality. The support 

structures are connected to the part material, and they must be removed during postprocessing. The 

surface areas connected to the support structures are likely to have irregularities like residual material 

or scarring. The stair-stepping effect causes surface roughness that varies across the part depending 

on the part’s surface curvature and surface normal. 

One of the approaches to reduce support structures is to reorient the part as a whole with the goal 

of minimizing either the amount of support material [1] or surfaces with a critical overhang [2, 3]. 

Additionally, part geometry can be redesigned to minimize supports [4]. Another approach that aims 



 

at elimination of support structure at all is the use of multi-axis deposition strategies. This can be 

either fully continuous multi-axis strategies [5, 6] or the 3+2 (indexing) strategy [7, 8]. In the 3+2 

strategy, the material is deposited in flat-layers but not all layers are parallel to each other. The build 

orientation varies from one chunk of layers to another chunk, as shown in Fig. 1. Also Fig. 1 depicts 

that the stair-stepping effect could significantly be reduced when changing from one build direction 

to another. 

 

Fig.1 –Principle of the 3+2 printing with 2 build directions 

The goal of this paper is to analyze how the surface roughness can be improved by switching from 

3d printing to 3+2 printing. It furthermore presents a design of a 3d printer with two additional 

rotational axes. In order to evaluate the quality implications of 3+2 printing, a novel 3+2 slicing 

strategy was developed. This strategy decomposes the input geometry into several partitions, while 

simultaneously avoiding support structures and minimizing the stair-stepping effect. Finally, a 

quantitative analysis of the stair-stepping effect was performed. It was based on numerical simulation, 

while future research will compare these results to actual printed specimens. 

Algorithmic premises for geometric analysis of meshes 

As shown in Fig. 1, 3+2 printing requires decomposition of the part geometry into chunks. In the 

simplest case, there is one plane that divides the part in two halves. The orientation of that split plane 

defines the build direction of the second chunk. By varying the position and orientation of the split 

plane, the second chunk will be sliced differently and therefore optimized to fulfil different criteria. 

Assuming that a given part geometry is a triangle mesh (STL file) with 𝑛 triangles, the algorithm 

searches for a split plane called 𝐸, as shown in Fig. 2 and Fig. 3. The split plane 𝐸 can be at an 

arbitrary position and have any orientation, but the first printing direction. The split plane defines two 

half-spaces (① and ②) located from the opposite sides of it. Half-space ① includes the geometry 

to be fabricated with the first printing direction, while half-space ② includes the geometry to be 

fabricated with the second printing direction. The concept of half-spaces is also necessary to analyze 

mesh triangles for overhang and stair-stepping effect and to identify an optimal position of the split 

plane. 

Fig. 2 and Fig. 3 also depict the first and second half spaces split by plane 𝐸 and the notation of 

triangles 𝑇1,𝑖 and 𝑇2,𝑖 residing in first and second half spaces. 



 

  
Fig.2 –Definition of the geometries required or 

used for computation 
Fig.3 –Definition of triangles after splitting of the space 

by plane 𝑬 

, where 𝐧⃗⃗ i: normal vector of triangle 𝑖; 

𝐫 1: first printing direction (𝟎, 𝟎, 𝟏); 

𝐫 2: second printing direction; 

𝑺: point defining the split plane 𝐸 (plane’s normal vector is collinear 𝐫 2).  

 

Finding intersections between triangles and a plane is computationally expensive. Instead of 

operating triangles, the algorithm can perform some quick tests on a point cloud. Then, triangle 𝑇𝑖 

can be represented by a number of points 𝑷𝒊,𝒋 as shown in Fig. 1. 

 

Fig.4 –Points to approximate a triangle 

Method - multi-plane decomposition 

Let’s assume that there is an error function. This function depends on the position of the split 

planes. The problem to be solved is finding planes 𝐸𝑖,𝑗 such that the error function is minimized. 

 

Fig.5 –Notation for multiple planes 



 

Finding the minimum value of the error function for all planes 𝐸, 𝐸′,..., is a computationally 

demanding task. In case of a single split plane 𝐸, there are three unknowns. For 𝑁 subsequent 

planes, the number of unknowns becomes 𝑁 times 3. In other words, the error function 𝐹, which 

was initially three-dimensional, becomes 𝑁 times 3-dimensional. Therefore, the split planes are 

searched subsequently within a search distance 𝑑𝑆 from the previously found plane (or table plane). 

The search distance 𝑑𝑆can be set to layer thickness multiplied by some factor. 

Error function.  

Global error functions can be formulated in many ways. Let’s assume the global error function 𝐹 is 

the total sum of all error functions for all triangles, therefore, a sum of local error functions  𝐹𝑚,𝑖 in 

each point  𝑷𝒎,𝒊 belonging to 𝑚𝑡ℎ “half-plane”. 

Best printing results are achieved if printing direction and triangle normal are orthogonal to each 

other. Deviation from the ideal angle of 90° can be a relevant characteristic for defining the error 

function. This scheme was considered in [9] to predict scallop height for the stair-stepping effect, as 

shown in Fig. 6. 

 

Fig.6 –Staircase effect and cusp height calculation [9] 

This allows us to design an error function  𝐹1,𝑖: 

 - If 𝐧⃗⃗ 1,i  and 𝐫 1  are parallel or almost parallel (within a given threshold), then error 

function  𝐹1,𝑖 equals 0. 

 - If 𝐧⃗⃗ 1,i  and 𝐫 1  are orthogonal or almost orthogonal (within a given threshold), then error 

function  𝐹1,𝑖 equals 0. 

 - If neither of the conditions above is met, then there is a weighted error function, given by 

Eq. 1, depending on the angle between 𝐧⃗⃗ 1,i and 𝐫 1. 

 

𝛼1,𝑖 < 𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⟹ 𝐹1,𝑖 = 𝛼1,𝑖𝐴1,𝑖  

𝛼1,𝑖 > 𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⟹ 𝐹1,𝑖 = (𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝐾(𝛼1,𝑖 − 𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑))𝐴1,𝑖 
(1) 

 

, where 

𝐾 is a penalty coefficient. 

𝐴1,𝑖 is the area of the triangle. 

Our global error function 𝐹 is a function of plane 𝐸. The goal, without the boundary conditions, 

is to minimize the total error, as given in Eq. 2. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐹(𝐸(𝑺, 𝜑, 𝜃)) (2) 

 



 

, where 

 𝑺 is a position defining plane 𝐸 position; 

 𝜑 and  𝜃 are the Euler angles defining plane 𝐸 orientation. 

Eq. 2 can be formulated as three-dimensional problem given in Eq. 3. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐹(𝑑, 𝜑, 𝜃) 

subject to 𝜑 ∈ [0°, 360°] | 𝜃 ∈ [0°, 180°] | d ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥] 
(3) 

 

If there are 𝑛 points 𝑷𝒊,𝒋 evenly distributed over the surface of its triangle, each point can be 

associated to an equal fraction of the triangle’s surface area 𝐴𝑖
′  , as given in Eq. 4. 

 

𝐴𝑖
′ = 

𝐴𝑖

𝑛
 (4) 

 

Basically, we do not use the triangle mesh but use points 𝑷𝒊,𝒋 instead, where each 𝑷𝒊,𝒋has an 

according normal 𝒏𝒊,𝒋⃗⃗⃗⃗⃗⃗ , which is still the triangle normal coming from 𝒏𝒊⃗⃗  ⃗ of triangle 𝑇𝑖, where 𝑷𝒊,𝒋 

is derived from. Furthermore, 𝐴𝑖
′ , which defines zone area for every 𝑷𝒊,𝒋, comes from triangle 𝑇𝑖 's 

area 𝐴𝑖 divided by the number of inserted points 𝑷𝒊,𝒋. Since mesh triangles vary in their size, it is 

not consistent to define the number of points being constant for all triangles. Instead of 𝑛, a user-

provider global value ∆𝐴, which defines the target for area size for inserted points. The actual 𝐴𝑖
′  is 

unlikely to meet ∆𝐴, because the areas of triangles tend to vary and 𝑛𝑖, the number of inserted points 

per triangle, is integer. Thus, the number must be rounded to the nearest integer, but not less than 0, 

as given in Eq. 5. 

 

𝑛𝑖 =  max (1, [
𝐴𝑖

∆𝐴
]) (5) 

 

This approximation simplifies the task of calculating the error function 𝐹, as in Eq. 6. 

 

𝐹1,𝑗 = 𝐾(𝛼1,𝑖 − 𝛼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)𝐴1,𝑖/𝑛𝑖 (6) 

 

Algorithm pseudo code. Eventually, the algorithm can be presented by the pseudo code in Fig. 7. 

Read through the triangle mesh geometry. 

Convert triangles into points. 

Set first printing direction to 𝑧 -axis. 

For loop using 𝜑 

  For loop using 𝜃 

   For loop using d steps 

    Calculate error function for (𝜑, 𝜃, 𝑑) 

Choose 𝜑, 𝜃, 𝑑 with minimal error function value, calculate current printing direction 

and split plane. Remove all points in the half space below the split plane 



 

Stop if no points are left. 

Set previous printing direction to current printing direction. 

Go to Step 4. 

Fig.7 –Algorithm's pseudo code 

Validation 

A model of a 3d printer equipped with a rotary-tilting table was developed, as shown in Fig. 8. 

The printer model can be loaded together with generated toolpaths into ModuleWorks CAM software 

for visualization and analysis, as shown in Fig. 9. The proof the 3+2 optimization is provided by using 

geometric results, where split planes and according subsections are highlighted with toggling colors. 

For a given part, two parameters varied. The first parameter was the number of desired slices (1,2, 

3, 4, and 5); this parameter defined the search distance as part size divided by the number. The second 

parameter was the angular granularity (1 and 5 degrees) defining the angular steps for iterating 𝜑 

and 𝜃 of the split planes. Smaller angular steps increase the number of iterations and, therefore, 

increase the computation time. Fig. 9- Fig. 12 show several decomposition results. 

  

Fig.8 –Kinematics of rotary axes Fig.9 –Backplot of 5-axis toolpath in 

ModuleWorks CAM software 

It is noticeable that the smaller granularity (1 degree) resulted in bigger number of subsections. 

Also, the difference to the 5 degrees granularity decomposition can be spotted as a relatively small 

chunk attached to the table. 

  

a) angle granularity 1 degree b) angle granularity 5 degrees 

Fig.10 –Decomposition with Desired Slices = 1 



 

 

  

a) angle granularity 1 degree b) angle granularity 5 degrees 

Fig.11 –Decomposition with Desired Slices = 3 

  

a) angle granularity 1 degree b) angle granularity 5 degrees 

Fig.12 –Decomposition with Desired Slices = 5 

Besides the global error function can be evaluated. The global error function sums up error 

functions of individual slices. Fig. 13 shows two graphs presenting how the global error function 

changes depending on the number of desired slices and, therefore, on the search distance, which 

decreases, whilst the number of desired slices increases. The general trend shows that the global error 

function tends to decrease with the decreased search distance. This can be explained by applying 

smaller subsections that are better aligned to the surface curvature to produce a smaller error. 

However, the function appears to be not always downwards monotone. There are jumps back at the 

right side of the charts. It seems that the reverse direction in the trend was due to discrete nature of 

the surface representation. The algorithm iterates over non-smooth triangulated surfaces with discrete 

steps, which can almost surely never meet an optimum. Thus, these upwards variations in graphs (less 

than 1%) can be attributed to the numerical issues during computations. 

Understanding of the global error function is not intuitive. The value of the global error function 

represents some metrics that cannot be directly mapped on the existing measures describing surface 

quality. The scallop height depends on the layer thickness and the orientation of the surface relative 

to the build direction. For the sake of simplicity, layer thickness can be omitted, and the stair stepping 

cusp height can be represented as a fraction of the layer height. Fig. 14- Fig. 18 show the distribution 

of different cusp heights changes with the increase of the number of partitions of the test part. All 



 

charts share the “red” histogram of the cusp distribution of the test parts without any subdivision. 

Then, the number of partitions increases from four to 32. The results for partition numbers above 16 

are not shown because of marginal differences. In Fig. 19, 20 baskets of cusp heights with the step of 

5% of the layer thickness are depicted with black bars. In the consequent illustrations (Fig. 14- 

Fig. 18), grey bars depicting a histogram of the previous partitioning have been added in order to 

improve comprehension of the presented information. As it can be seen, applying of the 

decomposition algorithm progressively decrease high magnitude scallops. Four partitions have been 

enough to eliminate cusps above 65% of the layer thickness. Increasing the number of partitions to 

32 helped to push this value down to 40% of the layer thickness. Four partitions led to a distribution 

skewed to the right side, while the larger numbers of partitions showed no clear trend. Besides, the 

average cusp height decreased progressively outwards the value of 0.377 for the non-partitioned one, 

with a local bump at 26 partitions, as shown in Fig. 19. 

 

Fig.13 –Global error function for different trials 

 

Fig.14 –Distribution of cusp sizes for the part consisting of 4 partitions 



 

 

Fig.15 –Distribution of cusp sizes for the part consisting of 7 partitions 

 

Fig.16 –Distribution of cusp sizes for the part consisting of 9 partitions 

 

Fig.17 –Distribution of cusp sizes for the part consisting of 13 partitions 



 

 

Fig.18 –Distribution of cusp sizes for the part consisting of 16 partitions 

 

Fig.19 –Average cusp height (0.377 for the non-partitioned one) 

Conclusions 

Multi-axis 3d printing has been proved to improve cusp height. In the presented use case, 16 build 

directions was sufficient to substantially reduce the average cusp heigh along with elimination of 

extreme values (>50% of the layer thickness) with already 7 build directions. Further increase of the 

number of partitions lowers the average cusp height but some decompositions can also be against the 

trend. Ultimately, distribution of the cusp sizes results in cusp values skewed to smaller values, whilst 

the most extreme cusp heights are completely eliminated. The algorithm’s performance is efficient 

enough to run the test cases within a few minutes on an ordinary PC. The future work will include 

measurement of the surface and comparison with the computed values. 
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