FANUC

Efficiency in Manufacturing Supported by FANUC

By

Dr. Wilfried Steiger

Content of Presentation

Traditional Manufacturing System

Efficiency (metrics and measures)

FANUC's Digital Twin Concept

CNC GUIDE 2

SERVO VIEWER Surface Estimation

CNC Parameter Adjustment Supporting Function

NC Reflection Studio (NCRS)

Photorealistic Machine Tool Simulation

QSSR AUTO PATH

Environmental Load Reduction

Bridging the Gap

Conclusion

Traditional Manufacturing Chain Elements

Efficiency in Manufacturing

KPI for Manufacturing Efficiency (Metrics - selection)

- Right First Time
- Production Time / (Production Time+Non-Scheduled Production Downtime)
- Production Time / Maintenance Requirements
- Environmental Load Reduction at same or higher output

Efficiency improvement factors:

- Reduce Errors by removal of error sources
- Optimize Process / Process Flow
- Adapt Process to environment or environment to process
- Control (collect data, review, improve)

$$Efficiency(\eta) = \frac{Output}{Input}$$

Ref.: Oxford Languages

Efficiency Gain: FANUC's CNC Digital (Twin) Concept

Productivity and Efficiency for Machine Tool Builders and Machine Tool Users

Training / Development / Planning / Verification / Maintenance Support

Fast Simulation Model: CNC GUIDE 2

Fast Simulation based on Servo Mechanical Model

- Servo Mechanical Model presents characteristic of each axis as truthfully as possible
- Reduction of time required for trail cutting, by estimating resulting surface truthfully.
- Fast Simulation cycles reduce test time significantly compared to real machine
- Supports optimization of CNC Settings
- Supports verification and optimization of part program
- General Process optimization

Quick Analysis: SERVO VIEWER Surface Estimation

Advanced Process Analysis: Surface Estimation - Information Rendering

Display: Tool Acceleration in Color Gradation

Efficient Setup Analysis: Surface Estimation - Surface Deviation Rendering

Result **Before** Adjustment

Result After Adjustment

Setup Verification: CNC Parameter Adjustment Functionality

Digital

CNC Parameter Adjustment Supporting Function

Set Parameter

SERVO GUIDE

CNC GUIDE 2

Servo Mechanical Model before
Path error
long cycle time

after
Path error

short cycle time

Powerful Visualization: NC Reflection Studio (NCRS)

Machine Simulation & Collision Check supporting CNC GUIDE 2 / Real CNC

- High Speed Execution
- Safe Operation
- CNC GUIDE 2 provides accurate machining path, by considering effects of acc./dec.

Benefit

- Accurate machining Program Check
- Actual machine available for production

Photo-Realistic Visualization - Visual Twin Concept

Time Saving Adjustment of Machining Conditions: Machining & Process Optimization by Digital Twin

Fast and efficient adjustment of the machining condition

Applications optimize machining condition, using virtual position data output by CNC GUIDE 2

- CNC Parameter Adjustment Supporting Function
- SERVO VIEWER Surface Estimation close to Real results
- NCRS Enabling accurate machine Simulation

Quick and Save Automation: QSSR AUTO PATH

CNC GUIDE

Machine tool user

CONTROL OF THE PROPERTY OF THE

QSSR AUTO PATH **ROBOGUIDE**

Machine philder/SI

Simulation with multiple systems

Program generation and confirmation on office PC

Digital Twin Propels Environmental Load Reduction

Digital Twin (Simulation) saves:

- Power
- Material
- Tool Wear
- Oils and Fats
- ...

Therefore

- Reduces environmental load by increasing efficiency of system
- Contributes to environmental management systems

Trial processing on Digital Twin

Advanced Technologies for Efficient Energy Conservation

Energy consumption related to machining

Energy consumption related to operating time

Energy consumption in whole machining process

Reducing Downtime: Maintenance Support

Efficiency Gains: Bridging Digital and Real World

More: Bridging the Gap

More: Bridging the Gap

Conclusion – Efficiency Improvement Factors

Main factors improving Manufacturing Efficiency by Digital Support And sufficient Bridges between Digital and Real World

- Capture Environment
- Operator Training
- Operation / Process Visualization
- Process Optimization
- Part Program Verification
- (Real-Time) Collison Avoidance
- Estimated Surface Verification
- Maintenance Prediction / Analysis

© 2022 FANUC Europe GmbH www.fanuc.eu